Sea surface temperature patterns in the Tropical Atlantic: Principal component analysis and nonlinear principal component analysis
نویسندگان
چکیده
منابع مشابه
Nonlinear Principal Component Analysis
A. Two quite different forms of nonlinear principal component analysis have been proposed in the literature. The first one is associated with the names of Guttman, Burt, Hayashi, Benzécri, McDonald, De Leeuw, Hill, Nishisato. We call itmultiple correspondence analysis. The second form has been discussed by Kruskal, Shepard, Roskam, Takane, Young, De Leeuw, Winsberg, Ramsay. We call it no...
متن کاملNonlinear principal component analysis
We study the extraction of nonlinear data models in high dimensional spaces with modi ed self organizing maps We present a general algorithm which maps low dimensional lattices into high dimensional data manifolds without violation of topology The approach is based on a new principle exploiting the speci c dynamical properties of the rst order phase tran sition induced by the noise of the data ...
متن کاملPrincipal Component Projection Without Principal Component Analysis
We show how to efficiently project a vector onto the top principal components of a matrix, without explicitly computing these components. Specifically, we introduce an iterative algorithm that provably computes the projection using few calls to any black-box routine for ridge regression. By avoiding explicit principal component analysis (PCA), our algorithm is the first with no runtime dependen...
متن کاملNonlinear Principal Component Analysis and Related Techniques
Principal Component Analysis (PCA from now on) is a multivariate data analysis technique used for many different purposes and in many different contexts. PCA is the basis for low rank least squares approximation of a data matrix, for finding linear combinations with maximum or minimum variance, for fitting bilinear biplot models, for computing factor analysis approximations, and for studying re...
متن کاملCompression of Breast Cancer Images By Principal Component Analysis
The principle of dimensionality reduction with PCA is the representation of the dataset ‘X’in terms of eigenvectors ei ∈ RN of its covariance matrix. The eigenvectors oriented in the direction with the maximum variance of X in RN carry the most relevant information of X. These eigenvectors are called principal components [8]. Ass...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Terrestrial, Atmospheric and Oceanic Sciences
سال: 2017
ISSN: 1017-0839
DOI: 10.3319/tao.2016.08.29.01